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Abstract
We consider random walks on the surface of the sphere Sn−1 (n � 2) of the
n-dimensional Euclidean space En, in short a hypersphere. By solving the
diffusion equation in Sn−1 we show that the usual law 〈r2〉 ∝ t valid in En−1

should be replaced in Sn−1 by the generic law 〈cos θ〉 ∝ exp(−t/τ ), where
θ denotes the angular displacement of the walker. More generally one has〈
C

n/2−1
L (cos θ)

〉
∝ exp(−t/τ (L, n)) where C

n/2−1
L is a Gegenbauer polynomial.

Conjectures concerning random walks on a fractal inscribed in Sn−1 are given
tentatively.

PACS numbers: 05.40.Fb, 05.40.Jc

1. Introduction

We consider a random walk (RW) on the surface of a sphere Sn−1 of the real Euclidean
space En of dimension n, a hypersphere for short. Let O be the centre of the hypersphere
and R its radius, Sn−1 is thus defined as the set of points M ≡ (x1, . . . , xn) of En such that∑n

i=1 x2
i = R2. If the legs of the walker are much smaller than the radius R of the sphere, then

the diffusion process can be described by a continuous diffusion equation, i.e.

Dρ(M, t) ≡
(

∂

∂t
− D�Sn−1

)
ρ(M, t) = 0 (1.1)

where ρ(M, t) is the density probability for the walker to be at point M at time t. D (>0)

is the diffusion coefficient and �Sn−1 denotes the Laplace–Beltrami operator in space Sn−1.
Explicit initial conditions will be specified later. Note that for imaginary times equation (1.1)
identifies with the Schrödinger equation of a free particle of Sn−1, alternatively this equation
can be considered as describing the diffusive rotational motion of a n-dimensional linear polar
molecule.
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The solution of equation (1.1) in the case n = 3 has been known since the work of Debye
on Brownian rotors [1, 2]. In this paper we extend Debye’s proof to arbitrary dimensions n
and show that a salient feature of a RW on a hypersphere is the validity of the generic law

〈ξ(0) · ξ(t)〉 ≡ 〈cos θ(t)〉 = exp(−D(n − 1)t/R2) (1.2)

where the unit vector ξ = OM/R denotes the orientation of vector OM in En. With the
north pole of Sn−1 chosen to be M (t = 0) the angle θ in equation (1.2) is thus the colatitude
of point M in spherical coordinates. The brackets 〈· · ·〉 denote a spatial average with weight
ρ(M, t), and the dot in the LHS is the usual scalar product in En. Result (1.2), given without
proof in [3], is not surprising; indeed as noted by Jund et al when Dt/R2 � 1 one can expand
both sides of equation (1.2) yielding for the projection x of vector OM in the Euclidean plane
En−1 tangent to Sn−1 at point M0 to the behaviour 〈x2〉 ∼ R2〈θ2〉 ∼ 2t (n−1)D characteristic
of a random walk in an Euclidean space of (n − 1) dimensions.

Recently Nissfolk et al have given a solution of (1.1) in the special case n = 4 [4]. Their
expression for ρ(M, t) is different from that which we derive in section 3 and, in particular,
does not allow us to recover easily equation (1.2). The equivalence of the two solutions is
established in the last section of this paper.

Our paper is organized as follows. In section 2 we give an elementary proof of
equation (1.2). The expression of the Green function of equation (1.1) is derived in section 3
from which equation (1.2) can be deduced. The solution, inspired by the seminal paper of
Debye on 3D rotors [1, 2], requires the whole machinery of hyperspherical harmonics and the
use of some properties of the rotation group SO(n) [5]. Finally in section 4 we consider in
more detail the case n = 4. Our solution of (1.1) for n = 4 and that proposed by Nissfolk
et al [4] are shown to be identical. A preliminary account of the present work, however
devoted to the special case n = 4, can be found in [7].

2. An elementary proof of 〈cos θ〉 ∝ exp(−T/τ )

We suppose that the walker is standing at some point OM0 = Rξ0 of Sn−1 at time t = 0. At
subsequent times its dynamics is governed by equation (1.1) and we study the time behaviour
of the random variable cos θ ≡ ξ0 · ξ. We choose the north pole of Sn−1 to be M0 and θ is
thus the colatitude of point M in spherical coordinates. We define

〈cos θ〉(t) =
∫

Sn−1

ρ(M, t) cos θ dτ(M) (2.1)

where dτ(M) is the infinitesimal volume element in Sn−1. It follows from equation (1.1) that

∂

∂t
〈cos θ〉 =

∫
Sn−1

D cos θ�Sn−1ρ(M, t) dτ(M)

=
∫

Sn−1

Dρ(M, t)�Sn−1 cos θ dτ(M) (2.2)

where we have made use of Green’s theorem in Sn−1 [6]. At this point we recall that the
Laplacian �En in En may be decomposed as the sum [5]

�En = �R + �Sn−1

�R = 1

Rn−1

∂

∂R
Rn−1 ∂

∂R

(2.3)

where �R acts only on the variable R and �Sn−1 , which acts only on angular variables, is
called the angular part of the Laplacian or, alternatively, the Laplace–Beltrami operator [5].
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From these remarks, the action of �Sn−1 on cos θ will easily be obtained. On one hand
we have obviously �En(OM · ξ0) = 0; however, on the other hand, it follows from
equations (2.3) that �En(OM · ξ0) ≡ �En(R cos θ) = (n − 1) cos θ/R + R�Sn−1 cos θ

whence �Sn−1 cos θ = −(n−1) cos θ/R2 yielding, when inserted in equation (2.2), the simple
equation

∂

∂t
〈cos θ〉 + (n − 1)

D

R2
〈cos θ〉 = 0 (2.4)

the solution of which being of course given by equation (1.2).

3. The general solution

We shall make extensive use of the properties of the hyperspherical harmonics to solve
equation (1.1). A short résumé on these functions might prove useful for the reader. We will
adopt the definitions and notation of the chapter IX of the classical textbook by Vilenkin [5].
In the case n = 4 this yields a definition of the harmonics which is slightly different from that
which we used previously [8–10].

To avoid confusion we shall denote by Sn−1 the hypersphere of radius R = 1. (When,
incidentally, we talk about the volumes of the spaces Sn−1 or Sn−1 we mean in fact the areas
of these spheres considered as manifolds of En.) The spherical coordinates of the unit vector
ξ = OM ≡ (ξ1, . . . , ξn) of Sn−1 are defined by the relations

ξ1 = sin θn−1 . . . sin θ2 sin θ1

ξ2 = sin θn−1 . . . sin θ2 cos θ1, . . .

ξn−1 = sin θn−1 cos θn−2

ξn = cos θn−1

(3.1)

where 0 � θ1 < 2π and 0 � θk < π for k �= 1. Note that θn−1 is the colatitude of point M
and was denoted by θ in section 2. The integration measure in Sn−1 will be defined as

dξ ≡ 1

An−1
sinn−2 θn−1 . . . sin θ2 dθ1 . . . dθn−1 (3.2)

where An−1 = 2πn/2/�(n/2) is the surface of the sphere Sn−1. With this normalization∫
Sn−1

dξ = 1 (3.3)

and the infinitesimal volume element in Sn−1 is given by dτ = Rn−1An−1 dξ. The expression
of the Laplacian �Sn−1 ≡ R2�Sn−1 in spherical coordinates reads as

�Sn−1 = 1

sinn−2 θn−1

∂

∂θn−1
sinn−2 θn−1

∂

∂θn−1
+

1

sin2 θn−1 sinn−3 θn−2

∂

∂θn−2
sinn−3 θn−2

∂

∂θn−2

+ · · · +
1

sin2 θn−1 . . . sin2 θ2

∂2

∂θ2
1

. (3.4)

The (hyper)spherical harmonics 	L,K(ξ) are defined to be the eigenvectors of the operator
�Sn−1 . The spectrum of �Sn−1 is given by the integers λ(n,L) = −L(L + n − 2) where
L = 0, 1, . . . is a positive integer. One can show that K ≡ (k1, . . . ,±kn−2) with L � k1 �
k2 � kn−2 � 0. Therefore, there are exactly h(n,L) = (2L + n − 2)(n + L − 3)!/(n − 2)!L!
distinct harmonics 	L,K(ξ) corresponding to the eigenvalue λ(n,L). The 	L,K(ξ) constitute
a complete basis set for expanding any square integrable function f ∈ L2[Sn−1] defined
on Sn−1. An explicit expression of 	L,K(ξ) will be of little use and can be found
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in Vilenkin [5]. As the usual spherical harmonics the 	L,K(ξ) satisfy the following
properties [5]

• (i) orthogonality∫
Sn−1

	�
L,K(ξ)	L′,K ′(ξ) dξ = δL,L′ δK,K ′ (3.5)

• (ii) completeness∑
L,K

	�
L,K(ξ)	L,K(ξ′) = δSn−1(ξ, ξ′) (3.6)

where δSn−1 is the Dirac distribution for the unit hypersphere defined as∫
Sn−1

f (ξ)δSn−1(ξ, ξ′) dξ = f (ξ′) (3.7)

• (iii) addition theorem∑
K

	�
L,K(ξ)	L,K(ξ′) = 2L + n − 2

n − 2
C

n/2−1
L (ξ · ξ′) (3.8)

where the dot on the RHS denotes the usual scalar product in En, i.e. ξ · ξ′ = cos ψ

where ψ is the angle between the two unit vectors ξ and ξ′, and C
n/2−1
L is a

Gegenbauer polynomial. The Gegenbauer polynomials C
p

L are a generalization of
Legendre polynomials. C

p

L is defined as the coefficient of hL in the power-series expansion
of the function

(1 − 2th + h2)−p =
∞∑

L=0

C
p

L(t)hL. (3.9)

We have now in hand all the tools to solve equation (1.1). We first expand ρ(M, T ) in terms
of the 	L,K ,

ρ(M, t) =
∞∑

L=0

∑
K

ρL,K(t)	L,K(ξ) (3.10)

and then insert expansion (3.10) in equation (1.1). Making use of the orthogonal properties of
the 	L,K yields an infinite system of non-coupled equations(

∂

∂t
+ D

L(L + n − 2)

R2

)
ρL,K(t) = 0 (3.11)

the solution of which reads obviously as

ρL,K(t) = ρL,K(0) exp(−DL(L + n − 2)t/R2). (3.12)

We shall denote by ρ(M, t |M0, 0) the solution of (1.1) corresponding to the initial condition
ρ(M, 0) = δSn−1(M,M0) ≡ δSn−1(ξ, ξ0)/R

n−1An−1, i.e. the solution of

Dρ(M, t |M0, 0) = δ(t)
1

Rn−1An−1
δSn−1(ξ, ξ0). (3.13)

It follows readily from equations (3.12) and (3.6) that the Green function ρ(M, t |M0, 0) can
be expressed as

ρ(M, t |M0, 0) = 0 (t < 0)

ρ(M, t |M0, 0) = 1

Rn−1An−1

∞∑
L=0

∑
K

	�
L,K(ξ0)	L,K(ξ)

× exp(−DL(L + n − 2)t/R2) (t > 0). (3.14)
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Equation (3.14) can be further simplified with the help of the addition theorem (3.8) yielding
our final result

ρ(M, t |M0, 0) = 1

Rn−1An−1

∞∑
L=0

2L + n − 2

n − 2
C

n/2−1
L (ξ0 · ξ)

× exp(−DL(L + n − 2)t/R2) (t > 0). (3.15)

Some comments on equation (3.15) are in order.

(i) Solution (3.15) is invariant under rotation about the axis ξ0 as expected. Equation (3.15)
is a generalization for all n of Debye’s result which corresponds to the case n = 3
[1, 2]. In this case the Gegenbauer polynomials reduce to the Legendre polynomials PL.
In the case n = 4 we recover the result of [7] where the Gegenbauer polynomials reduce
to Tchebycheff polynomials of second kind. To be more precise, we recall that [5]

C
1/2
L (cos θ) = PL(cos θ) (n = 3) (3.16)

C1
L(cos θ) = sin(L + 1)θ

sin θ
(n = 4). (3.17)

(ii) Note that
∫
Sn−1

ρ(M, t |M0, 0) dτ = ρ0,0 = 1, i.e. the probability is conserved, and that we

also have limt→+∞ ρ(M, t |M0, 0) = 1/�n−1, where �n−1 = Rn−1An−1 is the volume of
the space Sn−1, i.e. the solution of the diffusive process is uniform after infinite time.

(iii) Let us define the time correlation functions

Fn/2−1
L (t) ≡ 〈

C
n/2−1
L (ξ0 · ξ)

〉
(L � 1)

=
∫
Sn−1

dξ0

∫
Sn−1

dξ C
n/2−1
L (ξ0 · ξ)ρ̂(M, t |M0, 0) (3.18)

where we have introduced the reduced Green function ρ̂ ≡ Rn−1An−1ρ. As a consequence
of the orthogonality properties (3.5) we find that

Fn/2−1
L (t) = (n − 3 + L)!

L!(n − 3)!
exp(−DL(L + n − 2)t/R2). (3.19)

Special cases are of interest. Firstly, since for L = 1 we have C
n/2−1
1 (u) = (n − 2)u,

equation (3.19) indeed gives back equation (1.2). For n = 3 and 4 we recover the results
for the 3D and 4D rotors [1, 2, 7]

〈PL(cos θ)〉 = exp(−DL(L + 1)t/R2) (n = 3) (3.20)〈
sin(L + 1)θ

sin θ

〉
= (L + 1) exp(−DL(L + 2)t/R2) (n = 4). (3.21)

Defining now the reorientational time τ
n/2−1
L as

τ
n/2−1
L =

∫ ∞

0

F n/2−1
L (t)

F n/2−1
L (0)

dt = R2

DL(L + n − 2)
(3.22)

we have now at our disposal a Kubo formula for the diffusion coefficient D. Note the
aesthetic relation τ

n/2−1
L

/
τ

n/2−1
L′ = L′(L′ +n−2)/L(L+n−2) which generalizes Debye’s

result to arbitrary dimensions [1, 2]. Since simulations of real 3D liquids or plasmas are
feasible (moreover efficient) in S3 [8–10] equation (3.22) is of prime importance since
it should allow the computation of the self-diffusion coefficient of such systems in the
course of equilibrium molecular dynamics simulations.
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(iv) Simulations of random walks on fractals inscribed in Sn−1 were reported recently [3].
While it is known that for random walks on fractal clusters in Euclidean spaces the
anomalous diffusion law 〈r2(t)〉 ∝ tβ holds [11, 12] (where β is some exponent depending
on the fractal dimensions of the cluster) the numerical results of [3] give evidence of the
law 〈cos θ〉 ∝ exp(−(t/τ )β), i.e. a stretched exponential relaxation, on the hypersphere.
As suggested by Jund et al [3] the anomalous diffusion law for a RW on a fractal can be
understood by replacing the time t by a fractal time tβ in the diffusion equation (1.1) and
thus in the solution (3.15). With this assumption we now have the ansatz(

τ
n/2−1
L

/
τ

n/2−1
L′

)1/β = L′(L′ + n − 2)/L(L + n − 2) (3.23)

which could be checked in numerical simulations.

4. Random walks in S3

We specialize to the case n = 3 and want to show that expression (3.15) of ρ(M, t |M0, 0)

is equivalent to that of [4]. This can be done as follows. Let us rewrite the reduced
ρ̂ = 2π2R3ρ(M, t |M0, 0) as

ρ̂ =
∞∑

L=0

(L + 1)
sin(L + 1)ψ

sin ψ
exp(−KL(L + 2)) (4.1)

where K = Dt/R2. A priori the angle ψ is in the range (0, π), however, since the function
is formally even in ψ we define ρ̂(−ψ) = ρ̂(ψ) for negative angles. This gives us a periodic
function of period 2π defined for all ψ ∈ R. We introduce now the periodic function

F(ψ) =
∫ ψ

0
dψ ′ ρ̂(ψ ′) sin(ψ ′) (4.2)

which can be rewritten after some algebra as

F(ψ) = F0 − exp K

2

+∞∑
p=−∞

exp(−Kp2) exp(−ipψ) (4.3)

where F0 is some unessential constant independent of angle ψ . At this point we recall the
Poisson summation theorem which states that for any function ϕ(x) holomorphic in the strip
−a < Im z < a one has

+∞∑
n=−∞

ϕ(x + 2nπ) = 1

2π

+∞∑
p=−∞

e−ipx

∫ +∞

−∞
ϕ(y) eipy dy. (4.4)

Applying the Poisson theorem for the Gaussian we get

F(ψ) = F0−
√

π exp K

2
√

K

+∞∑
n=−∞

exp

(
− (ψ + 2nπ)2

4K

)
(4.5)

which after differentiation yields for ρ̂

ρ̂(ψ, t) =
√

π exp K

4K3/2 sin ψ

+∞∑
n=−∞

(ψ + 2nπ) exp

(
− (ψ + 2nπ)2

4K

)
(4.6)

which coincides with the result of [4], apart from the prefactor which is not specified. Relations
similar to equation (4.6) can be obtained for even values of n (other than 4) but we failed to
get anything similar for odd n.
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